PEMODELAN VECTOR AUTOREGRESSIVE PADA PERAMALAN KADAR BEBAN CEMARAN COD DI SUNGAI CITARUM MENGGUNAKAN R

  • Soekardi Hadi Prabowo Program Studi Matematika Fakultas Sains dan Teknologi Universiatas Islam As­-Syafi’iyah Jakarta
  • - Hardyaningwati Program Studi Matematika Fakultas Sains dan Teknologi Universiatas Islam As­-Syafi’iyah Jakarta
Keywords: autoregressive vector model, software R, OLS, contemporaeous

Abstract

Citarum is one of the river that become the source of supply of clean water quality standard for society of West Java and DKI Jakarta. But it is currently experiencing pollution is worrying, because it is contaminated by liquid waste disposal, one of which is Chemical Oxygen Demand (COD) chemical parmeter as the most dominant pollutant indicator. This contributes to the decline in the quality of Citarum river water. To overcome. One model to solve the problem In this research developed Vector Autoregressive model (VAR). one of the multivariate analysis for time series data that can see the relation between the variables. The purpose of this study is to predict the contamination load level of COD River Citarum in three locations, with parameter estimation using ordinary least square method (OLS). Through data processing using Software R for the identification stage, VAR (1) model is selected and can be applied to COD COD prediction. While based on test result of lagrange multiplier shows estimation of model parameter obtained by efficient estimator by showing no contemporaeous correlation problem. This resulted estimator obtained from efficient OLS method. The result of VAR (1) -OLS model implementation on secondary data of Kada COD concluded that the model gives prediction of COD contamination load in three locations which are included in the seriously polluted category.

References

Ari Pani Desvina, A.P. dan Maryam J.. Pemodelan Pencemaran Udara Menggunakan Metode Vector Autoregressive (Var) di Provinsi Riau. Jurnal Sains, Teknologi dan Industri, ISSN 16932390 print/ISSN 2407­0939 online. Vol13, No., Juni 2016
Birri, A.A. dan Meutia, H.. Bahan Beracun Lepas Kendali. Greenpeace Asia Tenggara Jawa Barat. 2012.
B. Box, G.E.P., Gvylim, J.M. & Reinsel. Time Series Analusis, Fourth Edition,John Wiley and Sons Inc, New Jersey Published Simultanueously. Canada. 1976
Cahyaningsih, A & Harsoyo, B.Distribusi Spasial Tingkat Pencemaran Air di DAS Citarum, Jurnal Sains dan Teknologi Modifikasi Cuaca. 2010
Dufour, M.J. & Lynda, K.. Simulation Exact Test for Contemporaraneous Correlation of Disturbanes in Seemingly Unrelated Regression,Scentific Series. Cirano. Montreal. 2000
Lütkepohl, H.. New Introduction to Multiple Time Series Analisis, Springer. Berlin Heidelberg. New York. 2007
Olamide, E,I, & A Adepoju, A.A, , Estimating Srrmingly Unrelated Regressions With First Order Autoreregressive Disturbance. 2013
Rosadi, D.. Analsis Runtun Waktu. Gadjah Mada University Press. Yogyakarta. 2016
Wardhani, E.. Inventarisasi beban pencemaran air sungai Citarum di Kabupaten Bamdung Prosiding Seminar Nasional Tjipto Utomo Institut Teknologi. 2010
Wei, W.W.S,.Time Series Analysis Univariate and Multivariate Method. Addison Wesley Publishing Canada. 2006
Zellner, Arnold. An Eficient Method of Estimating Seemingy Unrelated Regression and Test Bias. Journal of American Statistical Association. JASA. 1962
Published
2018-08-09
Section
Artikel